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ABSTRACT 

This paper addresses error statistics for estimates of 
ballistic missile trajectory parameters that are 
computed from observations by space-based infrared 
(IR) sensors during the boost phase. These error 
statistics are useful for system level planning and 
performance estimation of such quantities as cueing 
accuracy vs time, sensitivity to satellite parameters, or 
impact point predictions. These statistics assume 
correct ballistic missile typing, which provides the 
basis for most of the inputs on which we have based 
our calculations. We simplify the actual ballistic 
missile motions to derive error estimates, but do 
assume both random and bias line-of-sight (LOS) 
angular errors from the satellites. The results of these 
error analyses compare favorably with much more 
detailed 6 degree of freedom simulation analyses and 
the results are easily embedded in spread sheets. Error 
statistics are given for the estimates of launch points, 
azimuth, cross range and down range impact points, 
and cueing area growth rate. 

INTRODUCTION 

An earlier version of this paper with the same title has 
been published in The Proceedings of the 1996 
Summer Computer Simulation Conference, which was 
held in Portland, Oregon on July 21-26,1996. This 
version contains some corrections and extensions. 

The purpose of this paper is to provide rules of thumb 
to estimate the performance of space-based IR 
surveillance systems observing ballistic missiles during 
boost phase. It is intended to foster insight and 
understanding for top-level system design and 
performance analyses. It facilitates a spread-sheet 
approach to enable quick and easy variation of input 
parameters. Given information about the locations of 
viewing satellites and their ballistic missile target and 
the random and bias errors of the satellites, ballistic 
missile launch and trajectory parameter accuracies and 

their error statistics can be estimated. These 
parameters include the launch and impact point 
locations, the azimuth and elevation angles of the 
ballistic missile flight path, and the ballistic state 
vector at burnout, which allows predictions of future 
positions,. The derived error statistics of these 
parameters are provided as standard deviations or 
percentile estimates of the errors of each parameter, 
thus enabling bounding, for example, of the system- 
level estimates of error volumes to be searched, the 
attack area uncertainty for retaliation against the 
transporter erector launcher (TEL), or the potential 
area threatened by a ballistic missile attack that might 
require personnel to take shelter. 

The nominal error calculations are made assuming 
stereo viewing, with modifications to account for Nsat 
(i.e. number of satellites) viewing. This paper provides 
approximations and supporting rationale for the error 
statistics of the parameters being estimated but does 
not attempt to actually estimate the parameters. 
The results can be viewed as analogous to a Cramer- 
Rao lower bound on the estimate accuracy or the result 
of a detailed covariance analysis. It should be expected 
that real-world results would generally be more 
pessimistic because of violations of the simplifying 
assumptions. 

The actual tracking processes used to estimate the 
parameters are not modeled, but assumptions are made 
about the general tracking approaches used. The 
equations are based on empirical fits to Monte-Carlo 
data, linear estimates of processes known to be much 
more complex, and simplified statistical assumptions 
(usually normal or uniform). However, the results 
appear to be reasonable (i.e., within about 10 percent) 
when compared to more sophisticated analyses and 
actual performance in some cases. 

ASSUMPTIONS 

Some of the simplifying assumptions used in this 
analysis are as follows 

1. This work was performed at POET and supported by the Ballistic Missile Defense Organization under 
IDA Contract Number DASW-01094-C-0054 and MITRE Contract Number DAAB-07-96-C-E601 
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• Each satellite has random and bias angular 
observation errors that are normally distributed 
and independent from each other with zero 
mean and known standard deviations. The 
random errors are crazr and aelr for random 
errors along the LOS in azimuth and elevation, 
respectively. They will produce different errors 
for each observation. The bias errors, aazb and 
crelb, are similarly zero mean and known 
standard deviation, but they are constant for 
each series of observations for a given satellite. 
In general, the standard deviations of the 
azimuth and elevation errors for a given satellite 
will be considered to be the same. 

The target is located in the mutual stereo 
viewing area of the satellite pairs, and 
individual observations are made at random 
times by each satellite, with a constant revisit 
time, Tr, between observations by a given 
satellite. The revisit time is the most important 
single parameter effecting errors in estimating 
future positions because it determines the range 
of uncertainty in the burnout time for the 
ballistic missile, Tbo, which is estimated as the 
midpoint of the time between the last 
observation that observes the ballistic missile 
and the first observation opportunity that does 
not observe the ballistic missile. An additional 
assumption is that the observing sensitivity is 
adequate to detect the ballistic missile at all 
times up to burnout. Although the observations 
will be considered to occur at random times for 
estimation of burnout time, for simplicity in the 
derivation of the other error statistics it will be 
assumed that a stereo observation consists of two 
simultaneous LOS observations. 

Enough observable burn time is present after 
cloud break for at least one additional 
observation by each satellite of a stereo pair after 
an initial observation by that satellite. The 
number of stereo observation intervals, n, must 
be at least one, or the motion of the ballistic 
missile cannot be estimated. 

The satellite and the ballistic missile target 
positions are assumed, establishing the 
fundamental viewing geometry. The type of 
target is known, its nominal flight path template 
(i.e., down-range distance and altitude vs. time) 
is known, and the ballistic missile exhibits no 
anomalous behavior. No sensor-sensor 
correlation errors exist between the satellites. 

Note: These assumptions are heroic If they are 
violated, the validity of the following results can be 
negated 

INPUT DATA 

To illustrate the process of estimating trajectory errors 
in a general way and to avoid any hint of the use of 
classified data, some notional Theater Ballistic Missile 
(TBM) performance data (that empirically 
approximates a minimum energy TBM trajectory) and 
satellite LOS errors are offered to provide a frame of 
reference (see Table 1). 

Table 1. Input Data 

Satellite Data 
LOS random error 

aazr = weir =15 microradians 
LOS bias error 

aazb = crelb = 50 microradians 
Satellite positions are geosynchronous at 

30° W / 30° E longitude 
Revisit time 

Tr= 10 seconds 

TBM Target Data 
TBM Target launch position 

35° N latitude, 0° E longitude 
Cloud break time 

cb = 30 seconds 

TBM Flight Data 
(rng = range of TBM in km, Re = earth radius in km) 
Burn time 

bt = 9.4 * rng1/3 seconds 
Burn distance 

bd = 0.6 * rng2/3 km 
Burn distance correction factor 

cf = 1 - (cb/bt)3 

Observed burn distance 
obd = bd * cf 

Burnout speed 
v = rng1/2/11.5 km/sec 

Burnout acceleration 
acc = 5.5 + rng/600 G's 

Burnout flight path angle 
ang = 45 * (1-rng/7t Re) - 2 degrees 

Time to impact after burnout 
Timp = (rng - bd) / 

{v * cos[ang + (180/rc) * mg/rc Re]} sec 
and is given in kilometers. Figure 1 indicates the 
relationship of the inputs to a TBM trajectory. 

In addition to the basic input parameters, some 
additional derived quantities are needed to get to the 
final results. From the input data, it is necessary to 
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bt ■ Bum tbiM - 8.4 x VrangT (sac) 

bd = Bum distanc« - 0.6 grange* (km) 

cf ■ bd Correction factor -1 • (cblbtfl 

v >|V«i| -/range/11.5(km/sec) 

ACC - 5.5 + range / 600 (g's) 

Bum Out Point 

Vel | at burnout 

ACC at burnout 

Ang = Right path angle at burn out 
= 45°(1-range/JiRearth)-2° 

) range/ jt 1^^) (seconds) 

Figure 1. TBM Input Parameter Data 
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Figure 2. Error Parameter Depiction 
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estimate the number of stereo observation intervals that 
will be available to use for further calculations. This 
number, n, is estimated by its expected value, that is n 
= the integer value of [(bt - cb)/Tr - 1/2], but should be 
at least 1. The subtraction of 1/2 takes into account the 
fact that the average time of the first observation will 
fall at half the revisit interval after cloud break. 

A correction factor, cf, is needed to account for the fact 
that the ballistic missile is not observable until after 
cloud break and the burn distance, bd, must be reduced 
correspondingly. This factor, which multiplies bd, was 
arrived at empirically and is cf = 1 - (cb/bt)3. As an 
example, for a TBM that would fly a range of 300-km, 
using the nominal inputs and formulas from Table 1, 
bt = 62.927 seconds, cb = 30 seconds, and Tr = 10 
seconds. Then n = 2 observation intervals and cf= 
0.892, reducing bd from its nominal value of 26.888 
km to an effective value of obd = 23.975 km for 
subsequent calculations (e.g.the azimuth error 
statistics). 

OUTPUT DATA 

Table 2 shows the output parameters of interest, and 
Figure 2 displays them graphically. 

Table 2. Output Data 

Position x,y,z km 1CT 

Launch point LP km CEP 

Burnout point BOP km RSS 

Burnout time Tbo sec 1d 

Azimuth az deg 1cr 

Flight path angle fpa deg 1CT 

Cross-track velocity Vctr km/sec 1cr 

ln-track velocity Vintr km/sec 1CT 

Cross-range impact point crimp km 1a 

Down-range impact point drimp km 1cr 

Cueing area radius 
growth rate 

cue km/sec 1cr 

CALCULATIONS 

Given the inputs described in Table 1, (i.e. positions 
and LOS error statistics for the satellites, ballistic 
missile position and data on the boost trajectory until 
burnout, cloud break time, revisit interval, and the total 
number of observing satellites), all of the ballistic 
missile error parameters can be estimated. The first 

step is to estimate the statistics of the position error at 
the target for each observation by a stereo pair, based 
on the satellite error statistics and known viewing 
geometry, and to use these statistics to estimate the 
other parameters. 

LOS Errors To Stereo Position Estimate Errors 

Given a series of stereo position estimations, Xi, Yi, 
and Zi, from each satellite pair at times Ti, the 
assertion is that the three dimensional (3-D) stereo 
position errors of each observation based on the 
random error components of satellite LOS errors are 
normally distributed in X, Y, and Z (defined, 
respectively, as directions along and perpendicular to 
the true path of the ballistic missile over the ground, 
and the altitude above the ground), with zero means 
and standard deviations ax, ay, and az. For equal 
satellite ranges and LOS errors, the approximate values 
of crx or ay are taken to be 

ax or ay = aazr (or aelr) * range to target / sin(0) and 

az = aazr (or aelr) * range to target / 2m, 

where 9 is the bistatic angle between the viewing LOS 
of each satellite of a stereo pair. Since aazr = aelr by 
assumption, for simplicity we will use only aazr in 
subsequent formulas. A more detailed estimate would 
take into account differences in the range from each 
satellite and the possibility of different LOS errors for 
each satellite. This difference is accounted for in the 
"Derivations" paragraph of this paper. For the viewing 
geometry given above, the range to the TBM from each 
satellite is 37,911 km and the bistatic angle, 0, is 67.57 
degrees. For aazr =15 microradians, then 
ax = ay = 0.615 km or 615 m and az = 402 m. 

If more than two viewing satellites contribute 
observations, the position error can be expected to be 
somewhat less than the stereo estimate. For Nsat (the 
number of satellites), the expected performance can be 
estimated as follows: First, for each satellite stereo 
pair combination [k = Nsat (Nsat - l)/2 pairs], 
calculate the ax, ay, and az. Then, calculate the 
overall estimate for the position error standard 
deviation in each direction from the empirical 
relationship 

(Nsat/2) / a2 = 1/al2 + l/a22 + ... + 1/ak2 

and use these quantities for additional calculations in 
place of the stereo values calculated earlier. 

DERIVATIONS 

Given information about the LOSs to the same object 
from two different satellites whose positions are 
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known, a weighted least squares estimate of the most 
likely position of the target object can be calculated. 
The initial information known about each LOS is the 
angular error statistics associated with it. After 
making an initial estimate of the object position, an 
estimate of the range from each satellite to the object is 
available. The squared product of the range and the 
standard deviation of the angular error for each 
satellite can be used in an iteration to weight the least 
squares estimate properly for an optimum estimate of 
object position. 

Let these weights be Wl = (Rngi * csx)
2 and W2 = 

(Rng2 * CT2)
2
 for satellites 1 and 2, respectively, and let 

9 be the bistatic angle between the LOS from each 
satellite. The bistatic angle is the angle whose cosine 
is the dot product of the unit vectors for each LOS. 
The bistatic angle is not the longitude separation 
between the satellites; however, for geosynchronous 
satellites, it is approximately the longitude difference 
plus 5 to 10 degrees. 

The resulting position estimate will have 3-D error 
components along the object related x, y, and z axes of 
ax, cry, and az, respectively, where x is defined, as 
above, as along the local horizontal direction of flight 
of the ballistic missile, y is perpendicular to x in the 
local horizontal plane, and z is in the direction of local 
vertical. The root-sum-square (RSS) estimate of the 
total error is (ax2 + ay2^- az2)1/2, which can be 
approximated by 

Wl / sin2(9) + W2 / sin2(9) + W3, 

where W3 = Wl * W2/(W1 + W2). 

In general, the components of x, y, and z do not line 
up with the terms in the approximation; however, the 
approximation terms can be interpreted as error 
components along the two LOS vectors (the Wl and 
W2 terms) and the error component perpendicular to 
the plane containing those vectors (the W3 term). By 
equating the W3 term, which is independent of the 
bistatic angle, to the z axis variance (az2), the x and y 
axis terms can be equated to the remaining Wl and 
W2 terms. This approach to estimating the x and y 
errors is conservative. Since the W3 term is always the 
smallest term, allocating the errors of the other terms 
to x and y ensures that they are as large as possible. 

Since the orientation of the ballistic missile flight path 
over the ground and its relation to the LOS vectors is 
arbitrary, there should be no preferred choice of the 
Wl or W2 term for either x or y. In that case, let 

ax2 + ay2 be equal to Wl / sin2(9) + W2 / sin2(0), 
and, as before, let CTX

2
 = cy2. Then, 

CTX
2
 = ay2 = (Wl + W2) / 2 sin2(9). 

Further, when Wl = W2, then 

CTX = ay = CTazr * range to target / sin(9), and 

CTZ = (W/2)1/2 = aazr * range to target / 21/2 

Note that the x and y position errors are minimized 
when the bistatic angle is 90 degrees and only grow by 
about 10 percent at bistatic angles of 65 or 115 
degrees. Thus, satellite longitude separations over a 
range of about 50 degrees provide nearly equivalent 
performance. The z error is not dependent on the 
bistatic angle but only on the LOS angular error and 
range to target. 

A different expression for the axes of the error ellipsoid 
resulting from the least squares estimate when Wl = 
W2 = W is as follows. The length direction of the 
error ellipsoid is in the direction of the bisector of the 
bistatic angle and the width direction is perpendicular 
to the length direction in the plane of the LOSs. The 
height direction is perpendicular to them both and also 
to the plane of the LOSs. The magnitudes of the 
variances of each axis error are (W/2) / sin2(9/2), 
(W/2) / cos2(9/2), and W/2, respectively. When the 
first two terms are summed, they are equal to 
2W/sin2(9), and the same allocation to ax and cry can 
be made as before. Figure 3 illustrates this relationship 
graphically. 

Azimuth, and Velocity Estimates and Variances 

With an estimate of the position errors for each 
observation, we can now examine the potential errors 
in flight azimuth and velocity (actually speed over the 
ground) arising from a linear least squares fit to the 
n+1 errored stereo observations. We also can estimate 
the position errors at the beginning and end of the burn 
trajectory based on the same fit over all the 
observations made during the burn. Note that the 
following calculations assume simplified motions for 
the trajectory, which are known to be incorrect for 
actual ballistic missile motion and will not produce 
good parameter estimates. However; the assertion is 
that the error statistics based on these assumptions are 
reasonable. Figure 4 shows the projection of the x and 
y components of the position estimate errors to the 
ground. 

For estimating the above errors, initially assume that 
for general x and y coordinate directions: 
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Figure 3. Converting LOS Errors to Position Errors 
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Figure 4. Stereo Position Errors to Ground Errors 
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X(t) = Xo + VX*t and Y(t) = Yo + VY*t, 

where Xo and Yo are the true positions at time zero 
and are, by definition, zero. This simplification 
assumes a constant speed, 

Vo2 = VX2 + VY2, 

and direction of flight, but is found to be quite 
adequate for the purpose. More detailed analyses using 
various models for acceleration produce somewhat 
more optimistic, but essentially equivalent results. 

Performing a linear least squares fit to the Xi data, for 
{ti = i * Tr 11 = 0 to n} and solving for Xo and VX 
produces the following standard results as the estimates 
forXoandVX. 

Xo; 

VX = 

(is4f2)i5)(2n+1"3i)Xi 

(n + 1)(n + 2)nTri = (j 
Z(2i-n)Xi 

These estimators are from a bivariate normal 
distribution with means equal to Xo and VX. The 
variances and covariance are given by: 

var(Xo) = 

var(VX) = 

2(2n+1)     2 

(n+1)(n+2)CTx 

12n -f. ax 
(n+1)(n+2)UTrJ 

co\(Xo,VX) = — 
f    *\ 

(w + l)(« + 2) 

Computing the variance of X(t), we have 

Tr 

var(X(0) = - 

12w + M+2 

(n + lXn + 2) 

Exactly analogous results for Yo, VY, and Y(t) come 
from regressing Y against t. 

Using the above distributions, we computed the 
distribution for the error in azimuth, where the 
azimuth is given by arctan(VY/VX). This had a rather 
complicated distribution without a closed form 
expression. However, we found that it quickly 
converges, for parameter ranges of interest, to a 
simpler form found by taking the x axis in the direction 
of flight. 

This "theoretical orientation helps in two ways. First, 
it simplifies simulations to enable empirical 

verification of the results. Second, it makes the x 
coordinates large with respect to the y coordinates, all 
of whose values come from a normal distribution with 
mean zero and standard deviation ay (=ax). Since the 
final error estimates will be expressed in terms of 
parameters that are independent of the orientation, 
there is no loss of generality. 

Using the form X = Vot +Xo, we find that that the 
velocity estimate and its associated error are 

Vo=- 
6 

Z(2i-n)Xi 
(n+1)(n+2)nTri = 0 

12«        (ox. 
VM<^)=(»+lX»+2)l^J  ' or 

aVo = 
n+2      (ax 

(n + \)(n + 2)\nTr. 

where nTr is the observed time of flight. For 
the 300 km TBM example data, a Vo = 43.5 m/s 
velocity standard error due solely to observation error. 

Theoretically, the Xi can now be "corrected" to X(ti), 
which gives a AX = VoTr. The form Y = mX + Yo 
can then be used to regress the Yi against the X(ti). 
Since the Xi are, in general, very large compared to the 
correction, in simulations the estimates for the 
parameter M are very close and appear to be 
statistically equal. 

In an equivalent form of the error estimate for Vo, the 
error estimate for the slope m is 

var(m) = 

<r m = 

12n /       \2 
ay 

(n+1)(n+2) .nAXj 
, or 

12« 
1 (« + !)(« + 2) 

'a/ 
\obdJ 

where obd = the total observed distance flown = nAX. 

It is worth observing that, for a given position error, 
the velocity error is inversely proportional to the 
observing time and the slope error is inversely 
proportional to the distance flown, and both errors 
further decrease as the square root of the number of 
observations. 

Since we have assumed the x axis in the direction of 
flight, the expected value of the error in the slope 
estimate is zero. The standard deviation of the 
azimuth estimate error, aaz, can be approximated for 
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small am by the angle whose tangent is equal to am, 
so that aaz ~ arctan(am). That is 

adz » arctan 
12« ay 

'(« + !)(« + 2) obd; 

In an analogous way, the errors in altitude and flight 
path angle, can be estimated as 

var(Z(Z)) = - 

12« 
nAX   2. 

+M+2 

a fpa* arctan 

(H + 1X»+2) 

12« 

2 

crz 

I (« + !)(« +2) oArf, 

Continuing to use the earlier data for the 300 km 
TBM, am = 0.0363 or aaz = 2.078 degrees, and ofpa 
= 1.358 degrees. The proper way to compute the 
probability that the azimuth error will be less than 5 
degrees is to convert the 5 degrees to a slope by taking 
the tangent (= .0875) and converting that to a 
normalized z value by dividing by am (= 2.41 standard 
deviations) and then using the cumulative normal 
distribution to compute the two sided probability (= 
0.984). In fact, for aaz and the error bound each less 
than 5 degrees, assuming that the azimuth error is 
normal would result in a probability estimate difference 
of less than 0.001. 

Launch/ Burnout Point Random and Bias Errors 

The standard deviations of X(t), Y(X), and Z(X) are 
repeated here to address the launch and burnout point 
estimation. 

oX(t) = 

aY(X) = 

aZ(X) 

KH) -I   + « + 2 

(« + !)(« +2) 
■ox 

12»| 
X 

obd 
+ n + 2 

(« + !)(«+ 2) 
-ay 

( x    r 
---    +n+2 

Kobd    2J 
12« 

(« +1)(« + 2) 
-az 

To estimate the error in the launch point, it is 
reasonable to assume that launch took place at t: 

and X = 0, the time and place of the first stereo 
observation. It is possible to extrapolate the launch 
point error estimate back to the actual position to 
compensate for not observing the ballistic missile until 
after cloudbreak; however, the improvement in the 
error estimate is not worth the calculation effort. 

The launch point errors in x and y are statistically 
equal since ax = ay. We will consider the launch 
point estimate to be bivariate normal with zero 
covariance and 

aXL = aYL = aX(0) = aY(0) = /   2(2n+1) 

From the 300-km TBM example, aXL and aYL would 
be 562 meters each. These are, however, only the 
random part of the total launch point estimation error, 
and will be referred to as a^do,,,. 

The errors in position caused by the bias components 
in the satellite LOS errors also must be considered. 
They will be constant for each observation, and the 
standard deviations in X and Y caused by bias will be 
equal to abias = aazb * range to target / sin(9). For Z, 
abiasz = aazb * range to target / 21/2. For the 300-km 
TBM example, aUas = 2.051 km and abiasz = 1.340 km. 
The estimates and statistics for Vo, az, and fpa, which 
are derivatives of position, will not be affected by the 
constant bias errors; however, the estimates for the XL 
and YL position errors will be affected. 

When calculating the total variance for the position 
errors, the variances of the random components of the 
launch point estimate errors must be added to the 
variances of the bias components of those errors, 
producing atotai2 = tfrandom2 + a^2 in both the X and Y 
direction. From the 300-km TBM example, a^ = 
2.126 km launch point error in X or Y 

Combining these errors in X and Y will provide an 
estimate of the total error of the launch point. The 
total launch point error, LP, is the radial distance of 
the estimated launch point from the true launch point, 
thus aLP2 = atotai2+atotaiy

2. This is a bivariate normal 
distribution, and, expressed in percentile form (i.e., the 
error corresponding to a given probability that the true 
target launch point error will be no greater) is: 

LP = radial distance = [-2 ln(l-probability)]1/2 a^. 

This expression indicates that the Circular Error 
Probable (CEP), (i.e., probability = 0.5) for a launch 
point estimate will be equal to 1.1774 times atotal. For 
the 300-km TBM example, the CEP for the launch 
point estimate would be 2.503 km. 
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The launch point and bumout point error components 
are numerically equal, arising as opposite ends of the 
least squares line fit to the position data. This equality 
can be seen by setting X = nAX = obd or t = nTr in the 
expressions for aX(t), aY(X), and aZ(X). The 
burnout point 3-D position estimate (BOP), which 
would correspond to the last observation time, if no 
error were present in the burnout time estimate, will 
have a 3-D BOP RSS error equal to 

BOP   = CTtotalx   + CTtotaly   + CVtotalz , 

where atotaiz
2 = aZ(0)2 + abiasz

2. Both the launch point 
and burnout point errors can be dominated by the 
satellite LOS bias errors, which is the case for the 300- 
km TBM example: the 3-D BOP RSS error is 3.313 
km. 

BURNOUT TIME ERRORS 

Errors in estimating the burnout time can lead to an 
extremely large error of the burnout velocity because 
the ballistic missile is usually accelerating at several 
G's in the moments approaching burnout. The velocity 
errors solely caused by burnout time estimate errors are 
approximately equal to G At, where G is the ballistic 
missile acceleration and At is the magnitude of the 
burnout time error. For example, a 5-second error for 
a 10 G ballistic missile would lead to a velocity error of 
about 5s * 10 Gs * 9.8 m/s2= 490 m/s. After flying for 
100 seconds, this would translate to a position error of 
49 kilometers, possibly dwarfing all other sources of 
prediction error. 

The assumption is that each satellite independently 
observes the ballistic missile at intervals of Tr seconds 
and that the initial observation time for each satellite is 
uniformly randomly distributed. Thus, the 
observations of two or more satellites will be 
asynchronous with respect to each other and also with 
respect to the actual burnout time, Tbo. Using the 
strategy of estimating Tbo as the midpoint of the time 
between the last observation and the first observation 
opportunity that does not observe the ballistic missile 
gives an estimate for Tbo with zero mean error and a 
standard deviation = aTbo 
= Tr / [2(Nsat+l)(Nsat+2)]1/2, where Nsat is the 
number of observing satellites. For Tr = 10, and Nsat 
= 1, 2, 3, and 4, aTbo = 2.89, 2.04, 1.58, and 1.29 
seconds, respectively. 

For Nsat satellites, the probability that the error in the 
estimate for Tbo will be no larger than At seconds is 
equal to 

For example, for Tr = 10, Nsat = 2, and At = 3 
seconds, P(At) = P(3) = 0.84. For a 300-km TBM 
accelerating at 6 G's at burnout, this 3-second error 
would translate to an in-track velocity error of less than 
176.4 m/s 84 percent of the time. Approaching it the 
other way, for a given probability, the error will be less 
than 

At = Tr{l-[l-P(At)] 1/Nsat }/2. 

P(At) = [1 - (1 - 2 At /Tr)Nsat], for At < Tr/2. 

For Tr = 10 and Nsat = 2, the error will be less than 
1.464 seconds 50 percent of the time. 

Note that this error is only dependent on the revisit rate 
and the number of viewing satellites. This error is not 
normally distributed, but is uniform, triangular, 
parabolic, and so forth depending on Nsat. For Nsat 
>1 it can be treated as "nearly normal" to combine it 
with the velocity error arising solely from the 
observations, Vo, which is normal. Combining these 
errors gives a total standard deviation of the in-track 
velocity error, Vintr, computed from 

aVintr2 = aVo2 / cos2(ang) + (ace * aTbo)2 and, 

for the 300-km TBM example aVintr = 134 m/s. 

REMAINING PARAMETERS 

The remaining ballistic missile parameter errors can 
now be estimated. First, the cross-range impact point 
error, crimp, is calculated as 

acrimp = am * range km. 

The cross-track velocity error, Vcrtr, is then 

aVcrtr = acrimp / Timp km/sec. 

The down-range impact point error, drimp, can now be 
calculated, assuming that the orientation of the 
growing error ellipse stays fixed in inertial space until 
impact. Assuming a reentry angle equal to the burn 
out angle, propagating the in track velocity error for 
the time to impact, and accounting for the change in 
the local horizontal orientation after flying the ballistic 
missile range; the standard deviation for the down 
range impact point error is approximately 

adrimp = aVintr * Timp * 

[sin(ang+range/Re)/sin(ang) + 

cos(2 * ang + range/Re)] km. 

The final quantity to be calculated is an indicator of the 
uncertainty area size as a function of time after burn 
out. This parameter, cue, is the equivalent cueing area 
radius growth rate and is calculated as 

acue = (aVcrtr * aVintr)    km/sec 
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This quantity is of interest in calculating the estimated 
area to be searched by a sensor system based on the 
projected error volume around the estimated position at 
some future time after burnout. The largest 
components of the error volume are the in-track and 
cross-track errors due to burnout position errors and 
the errors in estimating velocity in those directions. 
These components are used to bound the projected area 
of the 3-D volume to be searched. Cue represents the 
growth rate of the radius of a circle that has the same 
area as the projected error ellipse with major and 
minor axes equal to the in-track and cross-track errors. 
The standard deviation of the actual area to be 
searched will be equal to the area of a circle with a 
radius of the BOP RSS error plus acue * the time after 
burnout. Cue is related to the bivariate normal 
distribution and the percentile estimate for it is 
approximated by 

cue(%) = acue * [-2 * ln(l - percentile)]1'2. 

For the 300-km TBM example, acrimp, aVcrtr, 
adrimp, and acue are 10.882 km, 0.044 km/sec, 
36.461 km, and .077 km/sec, respectively. 

Continuing, a 95th percentile estimate of the growth 
rate of the radius of the search area is 188 m/s. At 
100 seconds after burnout, the equivalent radius of the 
area to be searched for 95% confidence would be equal 
to BOP RSS + 100 *.188 = 3.313 + 18.8 = 22.1 km. 
This radius is equivalent to an area of 1535 km2. This 
information can then be used to calculate the number 
of radar beams required to search this area for a given 
radar position and known capability. 

SUMMARY AND CONCLUSIONS 

Tables 3 and 4 summarize the completed example for 
the 300 km range TBM. 

The expected performance of a constellation of space 
based IR surveillance sensors can be estimated for a 
wide variety of satellite constellations and viewing 
geometries, with error statistics for many of the tactical 
parameters of interest to a ballistic missile defense 
architecture being provided. These statistics can, in 
turn, be used to estimate the performance and search 

Table 3 Calculated Input Data for 300 km TBM 

Table 4 Calculated Outputs for 300 km Range TBM 

ax = ay = aazr * range to target / sin(9) = 615 m 

oz = aazr * range to target / 21/2 = 402 m 

aaz = atan{[12n/(n+l)(n+2)]1/2 (oy/obd)} = 2.078 deg 

ofpa = atan{[12n/(n+l)(n+2)]1/2(az/obd)} = 1.359 deg 

aVo = [12n/(n+l)(n+2)]1/2 (ax/nTr) = 43.5 m/sec 

aX(0) = aY(0) = amAm 

= [2(2n+l)/(n+l)(n+2)]1/2ax = 562 m 

abiM = aazb * range to target / sin(9) = 2051 m 

^totalx = atotaly = (arandom   + Gbias )      = 2126 m 

aLP = (atotaix + atotaiy )    = 3007 m 

CEP = [-2 In (1 - 0.5)]1/2 Otou = 2503 m 

anind.mi= [2(2n+l)/(n+l)(n+2)]1/2az = 367 m 

aw»« = aazb * range to target / 21/2 = 1340 m 

CTtotaU = (^randomz   + aDiasz )      = 1390 m 

BOP RSS = (atotaix + atotaiy + atotak )    = 3313 m 

aTbo = Tr/[2(Nsat+l)(Nsat+2)]1/2 = 2.04 sec 

aVintr = [aVo2 / cos2(ang) + (ace * aTbo)2]1/2 

= 134 m/s 

acrimp = am * range = 10.882 km 

aVctr = acrimp / Timp = 43.8 m/sec 

adrimp = aVintr * Timp *[ cos(2 * ang + range/Re) 

+ sin(ang + range/Re) / sin(ang)] = 36.461 km 

acue = (aVctr * aVintr)1/2 = 77 m/sec 

bt = = 62.927 sec bd = 26.888 km, cb = 30 sec, n = 2, 

cf= .892, obd = 23.975 km, v = 1.506 km/sec, 

ace = 6 Gs, ang = 42.326 degrees, Timp = 248.689 sec, 

range to target = = 37911 km, 9 = 67.57 degrees 

requirements of the ballistic missile defense system 
sensors. Formulas have been given to allow the 
calculation of all indicated parameters. An example 
has been given for a notional 300-km range TBM 
being viewed from geosynchronous altitude by two 
satellites spaced 60 degrees apart on each side of the 
TBM, with random and bias LOS errors of 15 and 50 
microradians in each axis. An example using a longer 
range TBM/ICBM trajectory will be given in the 
presentation. 

FINAL OBSERVATIONS 

These calculations of error estimate statistics are 
general and can be applied to almost any combination 
of satellite viewing geometries. The formulas are 
suitable for incorporation into a spreadsheet from 
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which tables and graphs can be generated to enable 
comparison and visualization of the performance of the 
same or different satellite constellations against a wide 
range of target ballistic missiles. 

In general, the accuracy of all parameter estimates 
improves as the square root of the number of 
observations and varies linearly with LOS errors and 
range of the viewing satellite from the ballistic missile. 

The accuracy of launch point and burnout point 
position estimates will tend to be dominated by the 
LOS bias error. Launch point estimate errors are 
nearly independent of the ballistic missile range, 
although they do improve with a longer burn time. 

Azimuth error is inversely proportional to the distance 
between the first and last observations and will tend to 
be smaller for longer range ballistic missiles. Cross- 
range errors in the impact point prediction tend to be 
nearly independent of ballistic missile range because 
the improved azimuth accuracy for longer range 
ballistic missiles is offset by the longer flight time and 
distance to impact. 

The largest contributor to the error in predicting future 
position will generally be the error in estimating the 
burn out time (which dominates the error in estimating 
burnout velocity) and is proportional to the revisit rate. 

A one second error in the time of burnout changes the 
range estimate by about 5 percent for unbussed 
missiles. A bus contributes an additional velocity 
vector to the RV. 

Flight path angle errors have little effect on impact 
point prediction for missiles programmed for maximal 
distance. The errors increase to about 5 to 10 percent 
of the range for a one degree error on a depressed or 
lofted trajory targeted for half the maximal distance. 
This amount of deviation from the maximal distance 
flight path is very severe and tactically unlikely. 

Uncertainty search volumes grow as the cube of time, 
and the projected areas as the square of time, from 
burnout. Since the missile is also getting closer, the 
search requirements grow faster than the square of the 
time from burnout. Long range missiles could stress 
radar search resources if they are not detected early. 

The error in impact point prediction will be largest in 
the direction of the ballistic missile's estimated flight 
path and can be hundreds of kilometers in length. 
Increasing the revisit rate can dramatically reduce the 
burnout velocity error, and will also reduce the other 
errors to a lesser extent by providing more 
observations. 
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